Data Structure & Algorithms
  • 🖌️Unlocking the Power of Algorithms with C#
  • Data Structure
    • Data Structure
    • Big O
    • Array
    • Linked Lists
    • Stacks
    • Queues
    • Hash Tables
    • Trees
    • Graphs
    • Heap Sort
    • ParkingLot Algorithm
    • LRU cache
    • Priority Queue
  • Algorithms
    • Algorithm
    • Recursion
    • Sorting
    • Searching
    • Dynamic Programming
  • Problems
    • Array
      • Two Sum
      • Two Sum II - Input Array Is Sorted
      • Contains Duplicate
      • Maximum Subarray
      • House Robber
      • Move Zeroes
      • Rotate Array
      • Plus One
      • Find number of subarrays with even length
      • Find number of subarrays with even sum
      • Find Missing Element
      • Reduce Array Size to The Half
      • Remove Duplicates
      • Merge Sorted Arrays
      • Arrays Intersection
      • 3Sum
      • Trapping Rain Water
      • Maximum sum of a subarray
      • Longest Subarray
      • Subarray Sum Equals K
      • Container With Most Water
      • Missing Number
      • Roman to Integer
      • First Missing Positive
      • Unique Integers That Sum Up To 0
      • Integer to Roman
      • Flatten
    • String
      • Check if two strings are permutation of each other
      • String Compression
      • Palindrome Permutation
      • Determine if a string has all Unique Characters
      • One Away
      • Longest Substring Without Repeating Characters
      • Valid Palindrome
      • Valid Palindrome II
      • Backspace String Compare
      • First Unique Character in a String
      • Is Subsequence
      • URLify a given string
      • String has same characters at same position
      • Number of Ways to Split a String
      • Check whether two Strings are anagram of each other
      • Print last `n` lines of a big file or big string.
      • Multiply Strings
    • Matrix
      • Search a 2D Matrix
      • Search a 2D Matrix II
      • Rotate Matrix
      • Spiral Matrix
      • Set Matrix Zeroes
    • Bit Manipulation
      • Sum of Two Integers
      • Reverse Number
      • Reverse Number II
      • Binary Bits Count
      • Binary Bits Count II
    • Stack
      • Valid Parentheses
      • Balance or not expression
      • Decode String
    • Tree
      • Binary Tree Inorder Traversal
      • Binary Tree Preorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Return All Root-To-Leaf Paths
      • Binary Tree Height-Balanced
      • Valid Binary Search Tree
      • Binary Tree Sum of all left leaves.
    • Linked List
      • Linked List Delete Middle Node
      • Merge Sorted Linked List
      • Reverse Linked List
      • Remove Duplicates from Sorted List
      • Remove Duplicates from Unsorted List
      • Linked List Cycle
    • Graph
      • The Number Of Islands
      • Number of Closed Islands
      • Max Area of Island
      • Rotting Oranges
      • Number of Provinces
      • Course Schedule
      • Surrounded Regions
      • Snakes and Ladders
      • Widest Path Without Trees
      • Knight Probability in Chessboard
      • Possible moves of knight
      • Check Knight Tour Configuration
      • Steps by Knight
      • Network Delay Time
    • Greedy
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Smallest Subset Array
      • Jump Game
    • Backtracking
      • Towers of Hanoi
      • Subsets
      • Combination Sum
      • Sudoku Solver
      • Word Search
    • Heap
      • Kth Largest Element in an Array
      • Top K Frequent Elements
    • Sorting
      • Order Colors String
    • Recursion
      • Number To Text
      • Divide Number
Powered by GitBook
On this page
  1. Problems
  2. Matrix

Set Matrix Zeroes

PreviousSpiral MatrixNextBit Manipulation

Last updated 1 year ago

Given an m x n matrix, return all elements of the matrix in spiral order.

Example 1:

Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
Output: [1,2,3,6,9,8,7,4,5]

Example 2:

Input: matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
Output: [1,2,3,4,8,12,11,10,9,5,6,7]

Constraints:

  • m == matrix.length

  • n == matrix[i].length

  • 1 <= m, n <= 10

  • -100 <= matrix[i][j] <= 100

Solutions

Steps

  1. Initialize two boolean arrays row and col: These arrays are used to keep track of which rows and columns have at least one zero. The size of row is the number of rows in the matrix, and the size of col is the number of columns.

  2. Identify rows and columns that need to be set to zero: This is done by iterating over each element in the matrix. If an element is zero, the corresponding entries in the row and col arrays are set to true.

  3. Set identified rows to zero: For each true entry in the row array, set all elements in that row of the matrix to zero.

  4. Set identified columns to zero: Similarly, for each true entry in the col array, set all elements in that column of the matrix to zero.

public class Solution
{
    public void SetZeroes(int[][] matrix)
    {
        bool[] row = new bool[matrix.Length];
        bool[] col = new bool[matrix[0].Length];

        // Identify rows and columns that need to be set to zero
        for (int i = 0; i < matrix.Length; i++) //N*M Times
        {
            for (int j = 0; j < matrix[0].Length; j++)
            {
                if (matrix[i][j] == 0)
                {
                    row[i] = true;
                    col[j] = true;
                }
            }
        }

        // Set identified rows to zero
        for (int i = 0; i < row.Length; i++)
        {
            if (row[i])
            {
                for (int j = 0; j < matrix[0].Length; j++)
                {
                    matrix[i][j] = 0;
                }
            }
        }

        // Set identified columns to zero
        for (int i = 0; i < col.Length; i++)
        {
            if (col[i])
            {
                for (int j = 0; j < matrix.Length; j++)
                {
                    matrix[j][i] = 0;
                }
            }
        }
    }

}

Complexity

Time complexity: O(N*M)

Space complexity: O(N+M)