Data Structure & Algorithms
  • πŸ–ŒοΈUnlocking the Power of Algorithms with C#
  • Data Structure
    • Data Structure
    • Big O
    • Array
    • Linked Lists
    • Stacks
    • Queues
    • Hash Tables
    • Trees
    • Graphs
    • Heap Sort
    • ParkingLot Algorithm
    • LRU cache
    • Priority Queue
  • Algorithms
    • Algorithm
    • Recursion
    • Sorting
    • Searching
    • Dynamic Programming
  • Problems
    • Array
      • Two Sum
      • Two Sum II - Input Array Is Sorted
      • Contains Duplicate
      • Maximum Subarray
      • House Robber
      • Move Zeroes
      • Rotate Array
      • Plus One
      • Find number of subarrays with even length
      • Find number of subarrays with even sum
      • Find Missing Element
      • Reduce Array Size to The Half
      • Remove Duplicates
      • Merge Sorted Arrays
      • Arrays Intersection
      • 3Sum
      • Trapping Rain Water
      • Maximum sum of a subarray
      • Longest Subarray
      • Subarray Sum Equals K
      • Container With Most Water
      • Missing Number
      • Roman to Integer
      • First Missing Positive
      • Unique Integers That Sum Up To 0
      • Integer to Roman
      • Flatten
    • String
      • Check if two strings are permutation of each other
      • String Compression
      • Palindrome Permutation
      • Determine if a string has all Unique Characters
      • One Away
      • Longest Substring Without Repeating Characters
      • Valid Palindrome
      • Valid Palindrome II
      • Backspace String Compare
      • First Unique Character in a String
      • Is Subsequence
      • URLify a given string
      • String has same characters at same position
      • Number of Ways to Split a String
      • Check whether two Strings are anagram of each other
      • Print last `n` lines of a big file or big string.
      • Multiply Strings
    • Matrix
      • Search a 2D Matrix
      • Search a 2D Matrix II
      • Rotate Matrix
      • Spiral Matrix
      • Set Matrix Zeroes
    • Bit Manipulation
      • Sum of Two Integers
      • Reverse Number
      • Reverse Number II
      • Binary Bits Count
      • Binary Bits Count II
    • Stack
      • Valid Parentheses
      • Balance or not expression
      • Decode String
    • Tree
      • Binary Tree Inorder Traversal
      • Binary Tree Preorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Return All Root-To-Leaf Paths
      • Binary Tree Height-Balanced
      • Valid Binary Search Tree
      • Binary Tree Sum of all left leaves.
    • Linked List
      • Linked List Delete Middle Node
      • Merge Sorted Linked List
      • Reverse Linked List
      • Remove Duplicates from Sorted List
      • Remove Duplicates from Unsorted List
      • Linked List Cycle
    • Graph
      • The Number Of Islands
      • Number of Closed Islands
      • Max Area of Island
      • Rotting Oranges
      • Number of Provinces
      • Course Schedule
      • Surrounded Regions
      • Snakes and Ladders
      • Widest Path Without Trees
      • Knight Probability in Chessboard
      • Possible moves of knight
      • Check Knight Tour Configuration
      • Steps by Knight
      • Network Delay Time
    • Greedy
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Smallest Subset Array
      • Jump Game
    • Backtracking
      • Towers of Hanoi
      • Subsets
      • Combination Sum
      • Sudoku Solver
      • Word Search
    • Heap
      • Kth Largest Element in an Array
      • Top K Frequent Elements
    • Sorting
      • Order Colors String
    • Recursion
      • Number To Text
      • Divide Number
Powered by GitBook
On this page
  1. Problems
  2. Linked List

Linked List Delete Middle Node

PreviousLinked ListNextMerge Sorted Linked List

Last updated 1 year ago

You are given the head of a linked list. Delete the middle node, and return the head of the modified linked list.

The middle node of a linked list of size n is the ⌊n / 2βŒ‹th node from the start using 0-based indexing, where ⌊xβŒ‹ denotes the largest integer less than or equal to x.

Solution

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     public int val;
 *     public ListNode next;
 *     public ListNode(int val=0, ListNode next=null) {
 *         this.val = val;
 *         this.next = next;
 *     }
 * }
 */
public class Solution {
    public ListNode DeleteMiddle(ListNode head) {
        
         if (head.next == null) return null;

        ListNode fast = head;
        ListNode slow = new ListNode(0, head);
        while (fast != null && fast.next != null)
        {
            fast = fast.next.next;
            slow = slow.next;
        }
        slow.next = slow.next.next;
        return head;
    }
}

The time complexity of the DeleteMiddle algorithm is O(n), where n is the number of nodes in the linked list. This is because each node in the list is visited exactly once.

The space complexity of the algorithm is O(1). This is because the algorithm only uses a constant amount of space to store the pointers (fast, slow), regardless of the size of the input linked list. The algorithm modifies the input linked list in-place and does not use any additional data structures whose size depends on the input. Hence, the space complexity is constant.