Data Structure & Algorithms
  • 🖌️Unlocking the Power of Algorithms with C#
  • Data Structure
    • Data Structure
    • Big O
    • Array
    • Linked Lists
    • Stacks
    • Queues
    • Hash Tables
    • Trees
    • Graphs
    • Heap Sort
    • ParkingLot Algorithm
    • LRU cache
    • Priority Queue
  • Algorithms
    • Algorithm
    • Recursion
    • Sorting
    • Searching
    • Dynamic Programming
  • Problems
    • Array
      • Two Sum
      • Two Sum II - Input Array Is Sorted
      • Contains Duplicate
      • Maximum Subarray
      • House Robber
      • Move Zeroes
      • Rotate Array
      • Plus One
      • Find number of subarrays with even length
      • Find number of subarrays with even sum
      • Find Missing Element
      • Reduce Array Size to The Half
      • Remove Duplicates
      • Merge Sorted Arrays
      • Arrays Intersection
      • 3Sum
      • Trapping Rain Water
      • Maximum sum of a subarray
      • Longest Subarray
      • Subarray Sum Equals K
      • Container With Most Water
      • Missing Number
      • Roman to Integer
      • First Missing Positive
      • Unique Integers That Sum Up To 0
      • Integer to Roman
      • Flatten
    • String
      • Check if two strings are permutation of each other
      • String Compression
      • Palindrome Permutation
      • Determine if a string has all Unique Characters
      • One Away
      • Longest Substring Without Repeating Characters
      • Valid Palindrome
      • Valid Palindrome II
      • Backspace String Compare
      • First Unique Character in a String
      • Is Subsequence
      • URLify a given string
      • String has same characters at same position
      • Number of Ways to Split a String
      • Check whether two Strings are anagram of each other
      • Print last `n` lines of a big file or big string.
      • Multiply Strings
    • Matrix
      • Search a 2D Matrix
      • Search a 2D Matrix II
      • Rotate Matrix
      • Spiral Matrix
      • Set Matrix Zeroes
    • Bit Manipulation
      • Sum of Two Integers
      • Reverse Number
      • Reverse Number II
      • Binary Bits Count
      • Binary Bits Count II
    • Stack
      • Valid Parentheses
      • Balance or not expression
      • Decode String
    • Tree
      • Binary Tree Inorder Traversal
      • Binary Tree Preorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Return All Root-To-Leaf Paths
      • Binary Tree Height-Balanced
      • Valid Binary Search Tree
      • Binary Tree Sum of all left leaves.
    • Linked List
      • Linked List Delete Middle Node
      • Merge Sorted Linked List
      • Reverse Linked List
      • Remove Duplicates from Sorted List
      • Remove Duplicates from Unsorted List
      • Linked List Cycle
    • Graph
      • The Number Of Islands
      • Number of Closed Islands
      • Max Area of Island
      • Rotting Oranges
      • Number of Provinces
      • Course Schedule
      • Surrounded Regions
      • Snakes and Ladders
      • Widest Path Without Trees
      • Knight Probability in Chessboard
      • Possible moves of knight
      • Check Knight Tour Configuration
      • Steps by Knight
      • Network Delay Time
    • Greedy
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Smallest Subset Array
      • Jump Game
    • Backtracking
      • Towers of Hanoi
      • Subsets
      • Combination Sum
      • Sudoku Solver
      • Word Search
    • Heap
      • Kth Largest Element in an Array
      • Top K Frequent Elements
    • Sorting
      • Order Colors String
    • Recursion
      • Number To Text
      • Divide Number
Powered by GitBook
On this page
  1. Data Structure

Heap Sort

public class HeapSort
{
    //Time complexity:It takes O(logn) for heapify and O(n) for constructing a heap. Hence, the overall time complexity of heap sort using min heap or max heap is O(n log n)
    //Space complexity: O(n) for call stack
    //Auxiliary Space complexity: O(1)  for swap two items

    public void Accending(int[] nums)
    {
        int N = nums.Length;
        for (int i = N / 2 - 1; i >= 0; i--)
        {
            MaxHeap(nums, N, i);
        }

        for (int j = N - 1; j >= 0; j--)
        {
            int temp = nums[0];
            nums[0] = nums[j];
            nums[j] = temp;
            MaxHeap(nums, j, 0);
        }
    }
    public void Decreasing(int[] nums)
    {
        int N = nums.Length;
        for (int i = N / 2 - 1; i >= 0; i--)
        {
            MinHeap(nums, N, i);
        }

        for (int j = N - 1; j >= 0; j--)
        {
            int temp = nums[0];
            nums[0] = nums[j];
            nums[j] = temp;
            MinHeap(nums, j, 0);
        }
    }

    private void MaxHeap(int[] nums, int N, int index)
    {
        int largest = index;
        int left = 2 * index + 1;
        int right = 2 * index + 2;

        if (left < N && nums[left] > nums[largest])
        {
            largest = left;
        }
        if (right < N && nums[right] > nums[largest])
        {
            largest = right;
        }

        if (largest != index)
        {
            int temp = nums[index];
            nums[index] = nums[largest];
            nums[largest] = temp;

            MaxHeap(nums, N, largest);
        }
    }

    private void MinHeap(int[] nums, int N, int index)
    {
        int smallest = index;
        int left = 2 * index + 1;
        int right = 2 * index + 2;

        if (left < N && nums[left] < nums[smallest])
        {
            smallest = left;
        }
        if (right < N && nums[right] < nums[smallest])
        {
            smallest = right;
        }

        if (smallest != index)
        {
            int temp = nums[index];
            nums[index] = nums[smallest];
            nums[smallest] = temp;

            MinHeap(nums, N, smallest);
        }
    }
}
PreviousGraphsNextParkingLot Algorithm

Last updated 1 year ago