Data Structure & Algorithms
  • 🖌️Unlocking the Power of Algorithms with C#
  • Data Structure
    • Data Structure
    • Big O
    • Array
    • Linked Lists
    • Stacks
    • Queues
    • Hash Tables
    • Trees
    • Graphs
    • Heap Sort
    • ParkingLot Algorithm
    • LRU cache
    • Priority Queue
  • Algorithms
    • Algorithm
    • Recursion
    • Sorting
    • Searching
    • Dynamic Programming
  • Problems
    • Array
      • Two Sum
      • Two Sum II - Input Array Is Sorted
      • Contains Duplicate
      • Maximum Subarray
      • House Robber
      • Move Zeroes
      • Rotate Array
      • Plus One
      • Find number of subarrays with even length
      • Find number of subarrays with even sum
      • Find Missing Element
      • Reduce Array Size to The Half
      • Remove Duplicates
      • Merge Sorted Arrays
      • Arrays Intersection
      • 3Sum
      • Trapping Rain Water
      • Maximum sum of a subarray
      • Longest Subarray
      • Subarray Sum Equals K
      • Container With Most Water
      • Missing Number
      • Roman to Integer
      • First Missing Positive
      • Unique Integers That Sum Up To 0
      • Integer to Roman
      • Flatten
    • String
      • Check if two strings are permutation of each other
      • String Compression
      • Palindrome Permutation
      • Determine if a string has all Unique Characters
      • One Away
      • Longest Substring Without Repeating Characters
      • Valid Palindrome
      • Valid Palindrome II
      • Backspace String Compare
      • First Unique Character in a String
      • Is Subsequence
      • URLify a given string
      • String has same characters at same position
      • Number of Ways to Split a String
      • Check whether two Strings are anagram of each other
      • Print last `n` lines of a big file or big string.
      • Multiply Strings
    • Matrix
      • Search a 2D Matrix
      • Search a 2D Matrix II
      • Rotate Matrix
      • Spiral Matrix
      • Set Matrix Zeroes
    • Bit Manipulation
      • Sum of Two Integers
      • Reverse Number
      • Reverse Number II
      • Binary Bits Count
      • Binary Bits Count II
    • Stack
      • Valid Parentheses
      • Balance or not expression
      • Decode String
    • Tree
      • Binary Tree Inorder Traversal
      • Binary Tree Preorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Return All Root-To-Leaf Paths
      • Binary Tree Height-Balanced
      • Valid Binary Search Tree
      • Binary Tree Sum of all left leaves.
    • Linked List
      • Linked List Delete Middle Node
      • Merge Sorted Linked List
      • Reverse Linked List
      • Remove Duplicates from Sorted List
      • Remove Duplicates from Unsorted List
      • Linked List Cycle
    • Graph
      • The Number Of Islands
      • Number of Closed Islands
      • Max Area of Island
      • Rotting Oranges
      • Number of Provinces
      • Course Schedule
      • Surrounded Regions
      • Snakes and Ladders
      • Widest Path Without Trees
      • Knight Probability in Chessboard
      • Possible moves of knight
      • Check Knight Tour Configuration
      • Steps by Knight
      • Network Delay Time
    • Greedy
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Smallest Subset Array
      • Jump Game
    • Backtracking
      • Towers of Hanoi
      • Subsets
      • Combination Sum
      • Sudoku Solver
      • Word Search
    • Heap
      • Kth Largest Element in an Array
      • Top K Frequent Elements
    • Sorting
      • Order Colors String
    • Recursion
      • Number To Text
      • Divide Number
Powered by GitBook
On this page
  1. Problems
  2. Backtracking

Sudoku Solver

PreviousCombination SumNextWord Search

Last updated 1 year ago

Write a program to solve a Sudoku puzzle by filling the empty cells.

A sudoku solution must satisfy all of the following rules:

  1. Each of the digits 1-9 must occur exactly once in each row.

  2. Each of the digits 1-9 must occur exactly once in each column.

  3. Each of the digits 1-9 must occur exactly once in each of the 9 3x3 sub-boxes of the grid.

The '.' character indicates empty cells.

Example 1:

Input: board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
Output: [["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
Explanation: The input board is shown above and the only valid solution is shown below:

Constraints:

  • board.length == 9

  • board[i].length == 9

  • board[i][j] is a digit or '.'.

  • It is guaranteed that the input board has only one solution.

Solutions

This problem can be solved using backtracking, which is a common technique for solving constraint satisfaction problems like Sudoku. The idea is to fill the cells one by one, and whenever we find that current cell cannot lead to a solution, we empty the cell (backtrack) and move on to the next cell.

public class Solution {
    public void SolveSudoku(char[][] board) {
        Solve(board);
    }

    private bool Solve(char[][] board) {
        for (int i = 0; i < 9; i++) {
            for (int j = 0; j < 9; j++) {
                if (board[i][j] == '.') {
                    for (char c = '1'; c <= '9'; c++) {
                        if (IsValid(board, i, j, c)) {
                            board[i][j] = c;
                            if (Solve(board)) {
                                return true;
                            } else {
                                board[i][j] = '.'; // undo the choice if it leads to no solution
                            }
                        }
                    }
                    return false; // return false if no valid numbers can be placed in the current cell
                }
            }
        }
        return true; // sudoku is solved
    }

    private bool IsValid(char[][] board, int row, int col, char c) {
        for (int i = 0; i < 9; i++) {
            if (board[i][col] == c) return false; // check column
            if (board[row][i] == c) return false; // check row
            if (board[3 * (row / 3) + i / 3][3 * (col / 3) + i % 3] == c) return false; // check 3*3 box
        }
        return true;
    }
}

In this code, Solve is a recursive function that tries to fill the cells from top to bottom and left to right. For each empty cell, it tries all possible numbers from 1 to 9, and calls itself to fill the next cell. If it finds that the current cell cannot lead to a solution (no valid numbers can be placed or the recursive call returns false), it empties the cell (backtracks) and continues with the next number. If it has tried all numbers and none of them work, it returns false to backtrack to the previous cell. The process continues until all cells are filled.

IsValid is a helper function that checks if a number can be placed in a certain cell according to the Sudoku rules.

The time complexity of this solution is O(9^(nn)), where n is the number of empty cells, because in the worst case we need to try 9 numbers for each empty cell. The space complexity is O(nn) because of the recursion stack (depth-first search).