Data Structure & Algorithms
  • 🖌️Unlocking the Power of Algorithms with C#
  • Data Structure
    • Data Structure
    • Big O
    • Array
    • Linked Lists
    • Stacks
    • Queues
    • Hash Tables
    • Trees
    • Graphs
    • Heap Sort
    • ParkingLot Algorithm
    • LRU cache
    • Priority Queue
  • Algorithms
    • Algorithm
    • Recursion
    • Sorting
    • Searching
    • Dynamic Programming
  • Problems
    • Array
      • Two Sum
      • Two Sum II - Input Array Is Sorted
      • Contains Duplicate
      • Maximum Subarray
      • House Robber
      • Move Zeroes
      • Rotate Array
      • Plus One
      • Find number of subarrays with even length
      • Find number of subarrays with even sum
      • Find Missing Element
      • Reduce Array Size to The Half
      • Remove Duplicates
      • Merge Sorted Arrays
      • Arrays Intersection
      • 3Sum
      • Trapping Rain Water
      • Maximum sum of a subarray
      • Longest Subarray
      • Subarray Sum Equals K
      • Container With Most Water
      • Missing Number
      • Roman to Integer
      • First Missing Positive
      • Unique Integers That Sum Up To 0
      • Integer to Roman
      • Flatten
    • String
      • Check if two strings are permutation of each other
      • String Compression
      • Palindrome Permutation
      • Determine if a string has all Unique Characters
      • One Away
      • Longest Substring Without Repeating Characters
      • Valid Palindrome
      • Valid Palindrome II
      • Backspace String Compare
      • First Unique Character in a String
      • Is Subsequence
      • URLify a given string
      • String has same characters at same position
      • Number of Ways to Split a String
      • Check whether two Strings are anagram of each other
      • Print last `n` lines of a big file or big string.
      • Multiply Strings
    • Matrix
      • Search a 2D Matrix
      • Search a 2D Matrix II
      • Rotate Matrix
      • Spiral Matrix
      • Set Matrix Zeroes
    • Bit Manipulation
      • Sum of Two Integers
      • Reverse Number
      • Reverse Number II
      • Binary Bits Count
      • Binary Bits Count II
    • Stack
      • Valid Parentheses
      • Balance or not expression
      • Decode String
    • Tree
      • Binary Tree Inorder Traversal
      • Binary Tree Preorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Return All Root-To-Leaf Paths
      • Binary Tree Height-Balanced
      • Valid Binary Search Tree
      • Binary Tree Sum of all left leaves.
    • Linked List
      • Linked List Delete Middle Node
      • Merge Sorted Linked List
      • Reverse Linked List
      • Remove Duplicates from Sorted List
      • Remove Duplicates from Unsorted List
      • Linked List Cycle
    • Graph
      • The Number Of Islands
      • Number of Closed Islands
      • Max Area of Island
      • Rotting Oranges
      • Number of Provinces
      • Course Schedule
      • Surrounded Regions
      • Snakes and Ladders
      • Widest Path Without Trees
      • Knight Probability in Chessboard
      • Possible moves of knight
      • Check Knight Tour Configuration
      • Steps by Knight
      • Network Delay Time
    • Greedy
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Smallest Subset Array
      • Jump Game
    • Backtracking
      • Towers of Hanoi
      • Subsets
      • Combination Sum
      • Sudoku Solver
      • Word Search
    • Heap
      • Kth Largest Element in an Array
      • Top K Frequent Elements
    • Sorting
      • Order Colors String
    • Recursion
      • Number To Text
      • Divide Number
Powered by GitBook
On this page
  1. Problems
  2. Graph

Network Delay Time

PreviousSteps by KnightNextGreedy

Last updated 1 year ago

You are given a network of n nodes, labeled from 1 to n. You are also given times, a list of travel times as directed edges times[i] = (ui, vi, wi), where ui is the source node, vi is the target node, and wi is the time it takes for a signal to travel from source to target.

We will send a signal from a given node k. Return the minimum time it takes for all the n nodes to receive the signal. If it is impossible for all the n nodes to receive the signal, return -1.

Example 1:

Input: times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
Output: 2

Example 2:

Input: times = [[1,2,1]], n = 2, k = 1
Output: 1

Example 3:

Input: times = [[1,2,1]], n = 2, k = 2
Output: -1

Constraints:

  • 1 <= k <= n <= 100

  • 1 <= times.length <= 6000

  • times[i].length == 3

  • 1 <= ui, vi <= n

  • ui != vi

  • 0 <= wi <= 100

  • All the pairs (ui, vi) are unique. (i.e., no multiple edges.)

Solutions

This problem can be solved using Dijkstra’s algorithm, which is a famous algorithm for finding the shortest paths from a single source in a graph with non-negative edge weights.

public class Solution {
    public int NetworkDelayTime(int[][] times, int n, int k) {
        var graph = new Dictionary<int, List<(int, int)>>();
        foreach (var time in times) {
            if (!graph.ContainsKey(time[0])) {
                graph[time[0]] = new List<(int, int)>();
            }
            graph[time[0]].Add((time[1], time[2]));
        }

        var dist = new Dictionary<int, int>();
        for (int i = 1; i <= n; ++i) {
            dist[i] = int.MaxValue;
        }
        dist[k] = 0;

        var heap = new SortedSet<(int, int)>() { (0, k) };
        while (heap.Count > 0) {
            var node = heap.Min;
            heap.Remove(node);
            int d = node.Item1, nodeIdx = node.Item2;
            if (d != dist[nodeIdx]) continue;
            if (graph.ContainsKey(nodeIdx)) {
                foreach (var pair in graph[nodeIdx]) {
                    int nei = pair.Item1, d2 = pair.Item2;
                    if (dist[nodeIdx] + d2 < dist[nei]) {
                        heap.Remove((dist[nei], nei));
                        dist[nei] = dist[nodeIdx] + d2;
                        heap.Add((dist[nei], nei));
                    }
                }
            }
        }

        int ans = 0;
        foreach (var cand in dist) {
            ans = Math.Max(ans, cand.Value);
        }
        return ans == int.MaxValue ? -1 : ans;
    }
}

The time complexity of this solution is O(E log E), where E is the number of edges (or the length of times), because in the worst case we need to iterate over each edge and update the queue. The space complexity is O(N + E), where N is the number of nodes, because we need to store the graph (O(E)) and the distance of each node (O(N)).