Data Structure & Algorithms
  • 🖌️Unlocking the Power of Algorithms with C#
  • Data Structure
    • Data Structure
    • Big O
    • Array
    • Linked Lists
    • Stacks
    • Queues
    • Hash Tables
    • Trees
    • Graphs
    • Heap Sort
    • ParkingLot Algorithm
    • LRU cache
    • Priority Queue
  • Algorithms
    • Algorithm
    • Recursion
    • Sorting
    • Searching
    • Dynamic Programming
  • Problems
    • Array
      • Two Sum
      • Two Sum II - Input Array Is Sorted
      • Contains Duplicate
      • Maximum Subarray
      • House Robber
      • Move Zeroes
      • Rotate Array
      • Plus One
      • Find number of subarrays with even length
      • Find number of subarrays with even sum
      • Find Missing Element
      • Reduce Array Size to The Half
      • Remove Duplicates
      • Merge Sorted Arrays
      • Arrays Intersection
      • 3Sum
      • Trapping Rain Water
      • Maximum sum of a subarray
      • Longest Subarray
      • Subarray Sum Equals K
      • Container With Most Water
      • Missing Number
      • Roman to Integer
      • First Missing Positive
      • Unique Integers That Sum Up To 0
      • Integer to Roman
      • Flatten
    • String
      • Check if two strings are permutation of each other
      • String Compression
      • Palindrome Permutation
      • Determine if a string has all Unique Characters
      • One Away
      • Longest Substring Without Repeating Characters
      • Valid Palindrome
      • Valid Palindrome II
      • Backspace String Compare
      • First Unique Character in a String
      • Is Subsequence
      • URLify a given string
      • String has same characters at same position
      • Number of Ways to Split a String
      • Check whether two Strings are anagram of each other
      • Print last `n` lines of a big file or big string.
      • Multiply Strings
    • Matrix
      • Search a 2D Matrix
      • Search a 2D Matrix II
      • Rotate Matrix
      • Spiral Matrix
      • Set Matrix Zeroes
    • Bit Manipulation
      • Sum of Two Integers
      • Reverse Number
      • Reverse Number II
      • Binary Bits Count
      • Binary Bits Count II
    • Stack
      • Valid Parentheses
      • Balance or not expression
      • Decode String
    • Tree
      • Binary Tree Inorder Traversal
      • Binary Tree Preorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Return All Root-To-Leaf Paths
      • Binary Tree Height-Balanced
      • Valid Binary Search Tree
      • Binary Tree Sum of all left leaves.
    • Linked List
      • Linked List Delete Middle Node
      • Merge Sorted Linked List
      • Reverse Linked List
      • Remove Duplicates from Sorted List
      • Remove Duplicates from Unsorted List
      • Linked List Cycle
    • Graph
      • The Number Of Islands
      • Number of Closed Islands
      • Max Area of Island
      • Rotting Oranges
      • Number of Provinces
      • Course Schedule
      • Surrounded Regions
      • Snakes and Ladders
      • Widest Path Without Trees
      • Knight Probability in Chessboard
      • Possible moves of knight
      • Check Knight Tour Configuration
      • Steps by Knight
      • Network Delay Time
    • Greedy
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Smallest Subset Array
      • Jump Game
    • Backtracking
      • Towers of Hanoi
      • Subsets
      • Combination Sum
      • Sudoku Solver
      • Word Search
    • Heap
      • Kth Largest Element in an Array
      • Top K Frequent Elements
    • Sorting
      • Order Colors String
    • Recursion
      • Number To Text
      • Divide Number
Powered by GitBook
On this page
  1. Problems
  2. Graph

Rotting Oranges

PreviousMax Area of IslandNextNumber of Provinces

Last updated 1 year ago

You are given an m x n grid where each cell can have one of three values:

  • 0 representing an empty cell,

  • 1 representing a fresh orange, or

  • 2 representing a rotten orange.

Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.

Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1.

Example 1:

Input: grid = [[2,1,1],[1,1,0],[0,1,1]]
Output: 4

Example 2:

Input: grid = [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.

Example 3:

Input: grid = [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.

Constraints:

  • m == grid.length

  • n == grid[i].length

  • 1 <= m, n <= 10

  • grid[i][j] is 0, 1, or 2.

public class Solution {
     public int OrangesRotting(int[][] grid)
    {
        int n = grid.Length;
        int m = grid[0].Length;
        int fresh = 0;
        Queue<(int, int)> queue = new Queue<(int, int)>();

        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < m; j++)
            {
                if (grid[i][j] == 2)
                {
                    queue.Enqueue((i, j));
                }
                else if (grid[i][j] == 1)
                {
                    fresh++;
                }
            }
        }

        if (fresh == 0)
            return 0;

        int level = 0;
        while (queue.Count > 0)
        {
            level++;
            int size = queue.Count;
            for (int i = 0; i < size; i++)
            {
                var (x, y) = queue.Dequeue();

                if (x - 1 >= 0 && grid[x - 1][y] == 1)
                {
                    queue.Enqueue((x - 1, y));
                    grid[x - 1][y] = 2;
                    fresh--;
                }
                if (x + 1 < n && grid[x + 1][y] == 1)
                {
                    queue.Enqueue((x + 1, y));
                    grid[x + 1][y] = 2;
                    fresh--;
                }
                if (y - 1 >= 0 && grid[x][y - 1] == 1)
                {
                    queue.Enqueue((x, y - 1));
                    grid[x][y - 1] = 2;
                    fresh--;
                }
                if (y + 1 < m && grid[x][y + 1] == 1)
                {
                    queue.Enqueue((x, y + 1));
                    grid[x][y + 1] = 2;
                    fresh--;
                }

            }

        }

        return fresh > 0 ? -1 : level-1;

    }
}